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CHAPTER 12 

STRONGLY IMPLICIT PROCEDURE PACKAGE 

The 

here uti 

analysis 

Conceptualization and Implementation 

General Theory 

discussion of the Strongly Implicit Procedure (SIP) presented 

lizes certain general concepts of matrix algebra and numerical 

which may be reviewed in any standard reference, including those 

noted earlier by Peaceman (1977), Crichlow (1977) or Remson, Hornberger 

and Molz (1971). In addition to general background material, these three 

references provide descriptions of the Strongly Implicit Procedure itself 

which may be consulted to supplement the discussion presented here. 

SIP is a method for solving a large system of simultaneous linear 

equations by iteration. The finite difference equation for a single .I 

cell, i,j,k, was shown in Chapter 2 to be of the form 

Cvi,j,k-1/2hi,j,k-1 + CCi-1/2,j,khi-l,j,k + CRi,j-1/2,khi,j-1, 

+ (-Cvi,j,k-l/2 - CCi-1/2,j,k - CRi,j-1/2,k 

- CRi , j+1/2,k - CCi+l/2,j,k - Cvi ,j,k+1/2 + HCOPi,j,k)hi,j,k 

t CRi,j+l/E,khi,j+l,k t CCitl/2,j,khi+l,j,k 

t cvi ,j,ktl/2hi ,j,ktl = RHSi ,j,k* (7% 

One equation of this form is written for each cell in the finite-difference 

grid, expressing the relationship among the heads at node i,j,k, and at 

each of the six adjacent nodes at the end of a time step. Because each 

equation may involve up to seven unknown values of head, and because the 

set of unknown head values changes from one equation to the next through 

the grid, the equations for the entire grid must be solved simultaneously 

at each time step. The solution consists of one value of head for each 

node, for the end of the step. 
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The discussion of the SIP procedure presented here is based on the 

notation of Weinstein, Stone and Kwan (1969)) the developers of SIP. 

Using their notation, equation (79) may be written. 

Zi,j,khi,j,k-l- + Bi,j,khi-l,j,k + Di,j,khi,j-1,k + Ei,j,khi,j,k 

+ Fi,j,khi,j+l,k + hi,j,khi+l,j,k + Si,j,khi,j,k+l = Qi,j,k* (430) 

The coefficients in equation (80) all are labelled with the index i,j,k 

to show that they are associated with the equation for node i,j,k. Thus 

z{,j,k Of equation (80) is equivalent to cLi,j,k-l/2 Of equation (79); Ei,j,k 

of equation (80) is equivalent to the eXpreSSiOn (-cvi,j,k-1/2 - cci-l/2,j,k 

- CPi,j-1/2k - CPi,j+1/2k - CCi+l/2,j,k - CVi,j,k+1/2 + HCOFi,j,k) of 

equation (79); and so on. 

As pointed out in Chapter 2, the entire set of equations of the form 

of (80) can be summarized in matrix form as 

CA1 {hj = id (‘31) 

where [A] is the matrix of coefficients of head, (h) is a vector of 

head values, and (q} is a vector of the right-hand terms of equation 

(80) l 
Figure 46 shows the elements of the coefficient matrix and of t1ie 

two vectors for a mesh of three rows, four columns and two layers. Notice 

that the matrix [A] is sparse--i.e., that there are very few nonzero 

elements--and that these are all located on just seven diagonals, as 

indicated in figure 47. 

Examination of equations (79) and (80) will show that the term 

cLi,j,k-l/2 of equation (79) appears both as the coefficient Z in equation 

(80) for node i,j,k, and as the coefficient S in the corresponding 

equation for node i,j,k-1, that is 

Zi,j,k = Si,j,k-1 (;32) 
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Brackets indicate horizontal spacing, in matrix columns, between 
nonzero diagonals (e.g., diagonals E and F are adjacent). 

Figure 47.-Structure of coefficient matrix showing nonzero 
diagonals. 
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Similarly, 

and 
Bi,j,k = Hi-l,j,k (83) 

IIi,j,k = Fi,j-l,k* (84) 

Replacing each Z, B, and D coefficient in the matrix of Figure 46 

with the equivalent S, H, or F element, as defined by equations (82) - (84), 

yields the matrix of Figure 48, which is readily seen to be symmetric. 

Thus the coefficient matrix [A] of equation (81) is symmetric as well as 

sparse. 
A system of equations of the form of (81) can be solved by direct 

methods if [A] can be factored into two matrices [L*] and [U*], such that 

[L*] is in lower triangular form (all nonzero elements are on or below the 

main diagonal), while [U*] is in upper triagular form (all nonzero elements 

are on or above the main diagonal), and all elements on the main diagonal of 

[U*] are equal to one. Figure (49) illustrates the characteristics of 

CL*] and [U*] el t r a ive to [A] for a 3 x 3 matrix [A]. Once this factoring 

has been accomplished, a technique known as "backward and forward 

substitution" can be used to complete the solution. However, a difficulty 

arises in that, even though [A] is a sparse matrix, CL*] and [U*] are 

generally not sparse, and a great deal of computer memory and time may be 

needed to calculate all of their nonzero elements. In addition, round- 

off errors may become unacceptably large. 

The Strongly Implicit Procedure seeks to find a matrix [B] such that 

the sum matrix [A + B] can be factored easily into two matrices CL] and 

[U], where [A + B], CL], and [U] meet the following conditions: 

(1) [A + B] is "close" to [A]; 

(2) [L] is in lower triangular form while [U] is in upper triangular 

form, and all entries along the main diagonal of [UJ are equal 

to unity; 
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Figure 49.-Decomposition of a coefficient matrix into lowerand 
upper triangular matrices. 
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(3) CL1 and GUI are both sparse; and 

(4) both [L] and [U] have just four nonzero diagonals. 

Suppose a matrix [B] is constructed in an attempt to satisfy these 

conditions; the term [B] {h} can be added to each side of equation (81) 

to give 

CA + Bl{h) = {q) + CBl( h} (85) 

A solution vector {h) for equation (85) must also be a solution vector 

for equation (81). The presence of the vector (h} on both sides of 

equation (85) presents an immediate difficulty; however, if an iterative 

approach to the solution is utilized (chapter Z), values of h from the 

preceding iteration may be used in the head vector on the right. That 

is, equation (85) may be expressed in the form 

[A + B] {hfi) = {q} + [B] {ha-I} (86) 

where {ha) is a vector of head values from iteration R, and {ha-I} a vector 

of head values from iteration a-1. In equation (86), {h"-1) is actually 

used as an approximation to {ha}. If the matrix [B] were known, solution 

of (86) would be straightforward; for according to the properties 

postulated above, [A + B] could be factored easily into the sparse matrices 

[L] and [U], allowing the use of forward and backward substitution. Thus 

the problem of solving equation (86) is equivalent to that of finding an 

appropriate matrix [B]. In practice, however, the solution is pursued in 

terms of the matrices [A], [A + B], CL] and [U]. The term [A + B] {hg-I} 

is subtracted from each side of (86) to yield 

CA + Bl {ha} - [A + B] {ha-l} = {q) - [A] {ha-l} (87) 

or 

CA + B] {hg - ha-I} = {q) -[A] {ha-I) 
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In order that the conditions specified above for [L], [U], and [A + 

B] may be satisified, [A + B] must contain six nonzero diagonals which 

were not present in [A], as shown in figure 50; the effect of these 

additional nonzero diagonals is to introduce new terms into the equation 

for node i,j,k, involving heads at nodes not adjacent to i,j,k. The 

relationship between the elements of [A + B] and the elements of [L] and 

[U] is as given in the following equations, where as indicated in figures 

50 and 51, a, b, c, and d, refer to elements of CL], e, f, and g, refer 

to elements of [U] above the main diagonal, and capital letters refer to 

elements of [A + B]. 

z'i,j,k = ai,j,k (89-a) 

A'i,j,k = ai,j,kei,j,k-1 (89-b) 

T'i,j,k = ai,j,kfi,j,k-l (89-c) 

B'i,j,k = bi,j,k (89-d) 

c'i,j,k = ei-l,j,kbi,j,k (89-e) 

D'i,j,k = ci,j,k (89-f) 

E'i,j,k = ai,j,kgi,j,k-1 + bi,j,kfi-l,j,k 

+ ei,j-l,kci,j,k+di,j,k (89-g) 

F'i,j,k = di,j,kei,j,k (89-h) 

G'i,j,k = fi ,j-l,kci ,j,k (89-i) 

H'i,j,k = fi,j,kdi,j,k (89-j) 

U'i,j,k = bi,j,kgi-l,j,k (89-k) 

R'i,j,k = gi,j-l,kci,j,k (89-1) 

s'i,j,k = gi,j,kdi,j,k (89-m) 

If the subscript of an element in equations (89-a...m) places the element 

outside of the grid boundary, the element is assumed to be equal to zero. 

The 13 equations contain 20 unknown values, the elements of [L], [U], and 
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Figure 50.-Structure of matrix [A+B] showing 
nonzero diagonals. 
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Brackets indicate vertical spacing, in matrix rows, between 
nonzero diagonals (e.g., diagonals d and e are adjacent). 

Figure 51 .-Structure, showing nonzero diagonals, of the lower triangular 
factor [L] and the upper triangular factor [U] of matrix [A+B]. 
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[At B]. This indicates that there are many matrices [B] which can be 

added to [A] so that the sum can be factored into upper and lower triangular 

matrices of the form of [L] and [U]. However, the requirement that [I\ + B] 

must be "close" to [A], or equivalently that 

CA + Bl {h) = CA1 {h) (90) 

has not yet been used. In terms of the elements of [A + B] {h) and [$I {h) 

associated with an individual node, i,j,k, equation (90) implies that 

Z'i,j,khi,j,k-1 t A'i,j,khi,jtl,k-1 t T'i,j,khi+l,j,k-1 

+ B'i,j,khi-l,j,k t C’i,j,khi-l,jtl,k + U'i,j,khi,j-1,k 

t E'i,j,khi,j,k t F’i,j,khi,jtl,k t G’i,j,khi+l,j-1,k 

+ H'i,j,khitl,j,k t U’i,j,khi-l,j,ktl t R’i,j,khi,j-l,k+l 

t S'i,j,khi,j,ktl fj z,j,khi,j,k-1 t Bi,j,khi-l,j,k 

+ Di,j,khi,j-1,k + Ei,j,khi,j,k t Fi,j,khi,j+l,k ’ Hi,j,khitl,j,k 

t si,j,khi,j ,k+l (91) 

Equation (91) can be rearranged so that the terms from the six nonzero 

diagonals not present in [A] are all on the right side, while the left. 

side is made up of differences between elements of matrix [A] and 

corresponding elements of matrix [A + B], i.e. 

(zi ,j ,k-z' i,j,k)hi,j,k-l t (Bi,j,k-B'i,j,k)hi-l,j,k 

+ (Di , j ,k-D' i,j,k)hi,j-1,k t (Ei,j,k-E'i,j,k)hi,j,k 

t (Fi,j,k-F'i,j,k)hi,jtl,k t (Hi,j,k-H'i,j,k)hi+l,j,k 

t (Si,j,k-S’i,j,k)hi,j,ktl n A’i,j,khi,j+l,k-1 

+ T'i,j,khitl,j,k-1 t C’i,j,khi-l,jtl,k t G’i,j,khi+l,j-1,k 

t U'i,j,khi-1,jktl t B'i,j,khi,j-1,ktl (92) 

The terms on the right side of (92), corresponding to the six nonzero 

diagonals of [A t B] not appearing in [A], are all derived from the matrix 

B, and all involve the heads at nodes not adjacent to node, i,j,k; by contrast, 
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the terms on the left side of (92) are derived from both [A] and [B], and 

involve the heads at i,j,k and the six adjacent nodes. 

To reduce the effect of the terms corresponding to nodes not adjacent 

to i,j,k, three parameters, here termed a, B and y, and all chosen between 

zero and one, are introduced as multipliers of the terms on the right 

side of equation (92). Ultimately, as the solution of the matrix equations 

((85) or (86)) is implemented, these multipliers take on the role of 

iteration parameters. They are brought into equation (92) as follows: 

(zi , j,k-Z' i,j,k)hi,j,k-1 + (Bi,j,k-B'i,j,k)hi-l,j,k 

+ (Ui,j,k-U'i,j,k)hi,j-1,k t (Ei,j,k-E’i,j,k)hi,j,k 

+ (Fi,j,k-F'i,j,k)hi,j+l,k + (Hi,j,k-h'i,j,k)hi+l,j,k 

+ (Si,j,k-S’i,j,k)hi,j,k+l (J d’i,j,khi,j+l,k-1 

+ fiT’i,j,khi+l,j,k-1 + $‘i,j,khi-l,j+l,k 

+ YG’i,j,khi+l,j-1, k + BU’i,j,khi-1,jktl 

+ d’i ,j,khi-l,k+l (93) 

Next the heads on right side of (93), corresponding to nodes not 

adjacent to i,j,k, are expressed in terms of heads at nodes which are 

adjacent to i,j,k. This is done by noting that, for example, node i, 

jtl, k-l lies at the corner of a rectangle, the other three corners of 

which are: i,j,k-1; i,j+l,k; and i,j,k. Thus using the rules in 

interpolation illustrated in figure 52, hi,j+l,k-1 is given approximately 

by 
hi,j+l,k-1 = hi,j+l,k + hi,j,k-1 - hi,j,k* 

Similarly, 

(94-a) 

hi+l,j,k-l = hi,j,k-l + hi+l,j,k - hi,j,k (94-b) 

hi-l,j+l,k = hi-l,j,k + hi,j+l,k - hi,j,k (94-c) 
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Suppose the Functionf Is Known at 2,3 and 4. 

1 2 

By interpolation the Function 
at the Center Can be Approximated by 

f,(c) * f (2) +f (3) 
2 

and 

f*(c) - f (1) +f (4) 
2 

Suppose 

f, @I -f* (cl 

Then 

f (2) +f (3) =f (1) +f (4) 
2 2 

3 4 
Therefore 

f (1) -f (2) +f (3) -f (4) 

Figure 52.-Estimation of a function at one corner of a rectangle in 
terms of the values of the function at the other three 
corners. 
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hi+l,j-l,k = hi+l,j,k + hi,j-l,k - hi,j,k (94-d) 

hi-l,j,k+l = hi,j,k+l + hi-l,j,k - hi,j,k (94-e) 

hi,j-l,k+l = hi,j,k+l + hi,j-l,k - hi,j,k* (94-f) 

Substituting equations (94-a... f) into equation (93) and reorganizing gives 

(z'i,j,k - zi,j,k + d'i,j,k + BT'i,j,k) hi,j,k-1 

+ (B'i,j,k - Bi,j,k + $'i,j,k + @J'i,j,k) hi-l,j,k 

+ (U'i,j,k - Ui,j,k + s'i,j,k + d'i,j,k) hi,j-l,k 

+ (E'i,j,k - Ei,j,k - d'i,j,k - BT'i,j,k - $'i,j,k 

- YG'i,j,k - BU'i,j,k - d'i,j,k) hi,j,k 

+ (F'i,j,k - Fi,j,k + d'i,j,k + "C'i,j,k) hi,j+l,k 

+ (H'i,j,k - Hi,j,k + BT'i,j,k + *'i,j,k)hi+l,j,k 

+ (S'i,j,k - Si,j,k + BU'i,j,k + d'i,j,k)hi,j,k+l m 0 (95) 

The relation expressed in equation (95) can be satisfied if each coefficient 

is approximately equal to zero. Setting these coefficients equal to zero 

yields the equations 

z'i,j,k - zi,j,k + d'i,j,k + BT'i,j,k = 0 (96-a) 

B'i,j,k - Bi,j,k + $'i,j,k + BU'i,j,k = 0 (96-b) 

U'i,j,k - Ui,j,k + fi'i,j,k + d'i,j,k = 0 (96-c) 

E'i,j,k - Ei,j,k - d'i,j,k - BT'i,j,k 

- $'i,j,k - *'i,j,k 

- Bu'i,j,k - &'i,j,k = 0 (96-d) 

F'i,j,k - Fi,j,k + d'i,j,k + $'i,j,k = 0 (96-e) 

H'i,j,k - Hi,j,k + BT'i,j,k + $'i,j,k = 0 (96-f) 

S'i,j,k - si,j,k + 8U'i,j,k + d'i,j,k = 0 (96-d 

Equations (96-a...g) and (89-a... m) form a system of 20 equations in 20 

unknowns which when solved, will yield the entries of [A t B], [L] and 

[U] such that [A + B] is "close" to [A], and can be readily factored into 
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[L] and [U], where [L] and [U] are both sparse and have the required 

lower triangular and upper triangular forms. For example, substituting 

equations (89-a, -b, and -c) into equation (96-a) and rearranging yields 

ai,j,k = zi,j,k/(l + *i,j,k-1 + @fi,j,k-I)* (97-a) 

Similarly, 

bi,j,k = Bi,j,k/(l + Vei-l,j,k + @i-l,j,k) (97-b) 

ci,j,k = Di,j,k/(l + Yfi,j-1,k + agi,j-1,k) (97-c) 

A'i,j,k = ai,j,kei,j,k-1 (97-d) 

c'i,j,k = ei-l,j,kbi,j,k (97-e) 

G'i,j,k = fi, j-l,kci , j,k (97-f) 

R'i,j,k = gi,j-l,kci,j,k (97-g) 

T'i,j,k = ai,j,kfi,j,k-1 (97-h) 

U'i,j,k = bi,j,kgi-l,j,k (97-i ) 

di,j,k = Ei,j,k + d'i,j,k + BT'i,j,k 

+ *'i,j,k + @'i,j,k + @J'i,j,k 

+ d'i,j,k-ai,j,kgi,j,k-l-bi,j,kfi-l,j,k 

- ei,j-l,kci,j,k (97-j 1 

ei,j,k = (Fi,j,k-d'i,j,k-$'i,j,k)/di,j,k (97-k) 

f* l,j,k = (Hi,j,k-BT'i,j,k-$'i,j,k)/di,j,k (97-l) 

gi,j,k = (Si,j,k-d'i,j,k'BU'i,j,k)/di,j,k (97-m) 

Using these relations to provide the elements of [L] and [U], [A + B] may 

be replaced with the product [L][U] in (88) to yield 

[LJ[UJ {ha-ha-l} = {q) - [A] {ha-l) (98) 

where again the superscript R refers to the current iteration level, and 

t-1 to the preceding iteration level. We next define the vector {RESR} by 
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the vector {v) in the equation 

D-1 {v) = {REg) 

where {v) = [U] {hg-ha-l}. The vector 

(101) 

{v) determined in this way is then 

ultilized in a process of back substitution to solve for the vector 

{hR-hRB1} in the equation 

[U] {hR-hR-l} = {v) (102) 

In earlier discussions, the coefficients of the equations and hence the 

elements of the matrices were identified by the indices of the cells, as 

shown in figure 53-a. To illustrate the process of forward substitution, 

used to calculate the elements of the vector {v), it is convenient to 

renumber the equations sequentially using a single index, as shown in 

figure 53-b. Because all elements in [L] above the main diagonal are 

zero, the first linear equation represented by matrix equation (101) is 

d1v1 = RESla (103) 

In equation (103), the term dl has been determined through equation 

(97-j), and RESIR has been calculated through equation (99) as an element of 

the vector (RES'); thus (103) can be solved immediately for the value of vl. 

The second equation represented by matrix equation (101) is 

c2v1 + d2v2 = RES2' (104) 

{RE$} = {q} - [A] {hE-l} (99) 

Using this notation equation (98) can be written 

[L][U]{hR-hg-I} = {RE$) (100) 

Equation (100) can now be solved by a process of forward and backward 

substitution. The first step involves forward substitution to solve for 
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(a) Cell Numbering With 3 Indices 

3ow 

2 

1 

. 

(b) Cell Numbering With 1 Index 

Layer 1 

Layer 2 

Layer 1 

Layer 2 

Figure 53.-Cell numbering schemes for a grid using three 
indices and using one index. 
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Again, c2 and d2 are known from equations (97), and RESZR is known from 

equation (99); using the value of VI from the solution of equation (103), 

(104) can be solved for v2. 

The general equation for an element of {v) has the form 

Vn = (RESnR-anVn-NRC-bnVn-NCOL'CnVn-l)/dn (105) 

where NRC is the number of cells in the layer, NCOL is the number of 

columns in the model, the coefficeints an,bn,cn and dn are all determined 

through equations (97) and RESnR is determined through equation (99). 

The terms an and bn are zero for the first and second eqations ((103) and 

(104)); and each equation involves elements of {v} determined earlier in the 

sequence. This procedure of forward substitution, in which the elements 

of {v) are determined in sequence, is possible because of the lower 

triangular form of the matrix CL]--i.e., because [L] has only zeros to 

the right of the main diagonal. 

Back substitution is next used to calculate the elements of the 

vector {h R -h a-1} from the elements of {v), thus solving equation (102). 

The process of back substitution is similar to that of forward substitution 

except that, because the matrix [U] is upper triangular, the order of 

calculation is reversed. When the vector {hg-ha-I} has been calculated, 

it is added to the vector {h a-1} to obtain {hg), the vector of head 

values corresponding to iteration R. 

In summary, the problem of solving the equation 

CAl{h~ = {s) (106) 

has thus been converted into an iterative process in which: (1) the 

matrices [L] and [U] are determined using equations (97); (2) the vector 

IRESt} is calculated using the vector {q), the matrix [A] and heads from 

the preceding iteration; (3) equation (100) is then solved using forward 
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and backward substitution to obtain the vector {hg-he-l}; and (4) the 

vector {h"-l} is added to the vector {hfi-ha-l} to obtain the vector {hi}. 

However, while these are the essential steps of the SIP procedure, several 

aspects of the method remain to be discussed. 

Transfer of Arrays 

As noted previously, the coefficient matrix [A] is sparse, with only 

seven nonzero diagonals. Rather than passing the entire matrix to the 

SIP Package, only the nonzero diagonals are needed; and because of symmetry 

of the matrix, only the main diagonal and the three lower diagonals are 

needed. The three lower diagonals correspond to the conductance arrays 

CC, CR, and CV. The main diagonal is formed from the three conductance 

arrays and the array HCOF described in Chapter 2. The right hand side of 

the matrix equation, {q), corresponds to the array RHS described in Ctapter 

2. The latest estimate of the head distribution (ha-l), corresponds to the 

array HNEW. As new estimates of head are calculated by SIP, they are 

stored in HNEW replacing the previous estimates. Thus input to SIP 

consists of the following arrays: CC, CR, CV, RHS, HCOF, and HNEW. 

Output from SIP consists of a new HNEW array. As explained in Chapter, 3, 

the Formulate Procedure is inside the iteration loop; therefore, the 

input arrays may be modified at each iteration. 
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Order of Calculation 

Experience has shown that if the finite-difference equations are 

solved in two different orders on alternate iterations, the number of 

iterations needed to converge to a solution is reduced. The order assumed 

in the discussion, to this point, has been to begin at the first column, 

the first row, and the first layer, and to proceed in ascending column 

order, ascending row order, and ascending layer order. An alternative is 

to start at the first column, the last row, and the last layer, and to 

proceed in ascending column order, descending row order, and descending 

layer order. Using the same ordering of diagonal names used in figure 

51, equations similar to equations (g7-a...m) can be developed. 

ai,j,k = zi ,j,k/(l+* i,j,k+l+Bfi,j,k+l) 

bi,j,k = Bi,j,k/(l+Yei+l,j,k+@i+l,j,k) 

ci,j,k = Di ,j,kl(l+Yf i,j-l,k+@i,j-1,k) 

A'i,j,k = ai,j,kei,j,k+l 

C'i,j,k = ei+l,j,kbi,j,k 

G’i,j,k = fi ,j-1,kci ,j,k 

R'i,j,k = gi,j-l,kci,j,k 

T'i,j,k = ai,j,kfi ,j,k+l 

U'i,j,k = bi,j,kgi+l,j,k 

di,j,k = Ei,j,k + aA'i,j,k+@T'i,j,k 

+YC'i,j,k+fi'i,j,k +BU'i,j,k 

t~‘i,j,k-ai,j,k9i,j,k+l’bi,j,kfi+l,j,k 

-ei,j-l,kci,j,k 

They are 

(107-a) 

(107-b) 

(107-c) 

(107-d) 

(107-e) 

(107-f) 

(107-g) 

(107-h) 

(107-i ) 

(107-j) 
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ei,j,k = (Fi,j,k-d'i,j,k-s'i,j,k)/di,j,k (1107-k) 

f. l,j,k = (Hi,j,k-BT'i,j,k-fi'i,j,k)/di,j,k (307-l) 

gi,j,k = (%,j,k-a'i,j,k-BU'i,j,k)/di,j,k (107-m) 

In the model described herein, equations (107-a...m) and equation!; 

(97-a . ..m) are in effect invoked alternately in successive iterations. 

The model program actually uses one general set of equations in which the 

variables are identified by single indices. The ordering of (97) or 01' 

(107) is then achieved through the sequence of values assigned to the 

indices. In the following list of these general equations, the index nil 

refers to the cell in the previous layer calculated, but in the same row 

and column as cell n; the indices nrl and ncl are defined analogously. 

iteration parameters a, B and y have Also, in these equations, the 

each been replaced by a single 

section. Note that one additi 

parameter w as explained ,in the following 

onal equation has been added to the list-- 

the equation for vn, the element of the vector {v) corresponding to cell 

n. This equation can be added inasmuch as Vn can be calculated as soon 

as the nth rows of the matrices [L] and [U] have been calculated. The 

equations are 

an = Zn/(l + den11 + fnll)) 

bn = Bn/(l + den,1 + Snr1)) 

Cn = Dn/(l + dfncl + gncl >I 

A'n = anenll 

C'n = bnenrl 

G'n = cnfncl 

R'n = Cngncl 

T'n = anfnll 

U'n = bngnrl 

:108-a) 

:108-b) 

(108-c) 

( 108-d ) 

(108-e) 

(108-f) 

(108-g) 

(108-h) 

(108-i ) 
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dn = En t @(A‘, t T'n t C'n t G'n + U'n + R'n) 

- angnll - bnfnrl - cnencl (108-j ) 

en = (Fn - w(A’n + C’n))/dn ( 108-k ) 

fn = (Hn - w(T’n + G’n))/dn (108-l) 

Sn = (Sn - o(R’n + U’n))/dn (108-m) 

Vn = (RESn - anvnll - bnvnrl - CnVncl 11% (108-n) 

Since the backward substitution requires all values of en, fn, gn, and 

vn, space is allocated in the SIP Package for four arrays to store those 

values. Each of these arrays has as many elements as there are cells in 

the grid. 

Iteration Parameters 

While Weinstein, Stone and Kwan (1969) define three iteration parameters 

in their theoretical development, they utilize a single value in practice. 

Thus the terms a, 8 and y of equation (93) are replaced by a single 

parameter, W, which multiplies each term on the right side of the equation; 

however, o must be cycled through a series of values in successive iterations 

to achieve satisfactory rates of convergence. In the model described herein, 

values of w are calculated from the expression 

w(x) = l-(WSEED)(x-l)/(NPARM-1) x=1,2. . ..NPARM wu 

where NPARM is the total number of u values to be used; x is an index 

taking on integral values from 1 to NPARM; w(x) is the corresponding 

iteration parameter value; and WSEED is the iteration parameter "seed", 

calculated according to rules outlined below, and used as a basis for 

determining the sequence of w values. 

The value of WSEED is in turn developed as follows. The terms ~1, 

P29 and p3 are calculated for each cell in the mesh using the conductances 

between that cell and its neighbors, as follows 
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